# Sampling Individually-Fair Rankings that are Always Group Fair

Sruthi Gorantla, Anay Mehrotra, Amit Deshpande, Anand Louis

# **Need of Fairness in Ranking Algorithms**

Rankings are ubiquitous on online platforms and quintessential in finding relevant information quickly [Liu09; MRS10; ER15; Nob18; BW21]

Without fairness consideration, ranking algorithms output rankings that (1) skew representations of social groups-altering perception and polarizing opinions [ER15; KMM15] and (2) skew exposure at an individual level-leading to denial of economic opportunities to users [Han+17]

#### **Group Fairness Constraints Alone Are Insufficient**

A growing number algorithms try to output "fair" rankings by ensuring a desired representation of each protected group [PSK21; ZYS22]

While group fairness can mitigate under-representation across groups, they may not mitigate (and can even exacerbate) harms at individual level

E.g., specific individuals (whose utilities have high uncertainty) may be systematically assigned to poorer positions [Han+17; SKJ21]

## **Theoretical Guarantees on Sampling Group-Fair Rankings from Individually-Fair Distributions**

An efficient algorithm that samples rankings from an individually-fair distribution while ensuring that every output ranking is group fair

Microsoft Yale

Main Result. There is a polynomial time algorithm, that given L, U, A, C specifying fairness constraints, and  $\rho$  and v specifying utilities, outputs a ranking R sampled from distribution  $\mathcal{D}$  such that

- $\mathcal{D}$  satisfies (C, A)-individual-fairness constraints; and
- R satisfies (L, U)-group-fairness constraints. 2.

The expected utility of R is at least  $\alpha$ -times the optimal, where, e.g.,

$$\alpha \ge \frac{v_1 + v_2 + \dots + v_k}{k \cdot v_1}.$$

We present tighter bounds on  $\alpha$  in the paper.  $\alpha$  approaches 1 as either (1) the range of utilities or (2) the range of position-discounts shrinks.

E.g., with DCG position discounts [JK02] and  $k = 1,2,3, \alpha$  is  $\geq 0.8, 0.7, 0.6 \dots$ 

#### **Individual Fairness Requires Stochasticity**

Recent work in fair ranking proposes to incorporate fairness, from the individuals' perspective, in rankings [SJ18; BGW18; SKJ21]. At a high level, they aim to equalize the exposure of individuals with similar "utilities"

**Problem:** Since exposure is linked to the position of individuals in the ranking, a single deterministic ranking cannot satisfy individual fairness

**Example:** For instance, suppose individuals  $i_1$  and  $i_2$  have similar utilities. Any deterministic ranking, must place one before the other, thereby imparting a systematically higher exposure to the earlier individual.

Idea: Introduce stochasticity in the output rankings [SJ18; BGW18; SKJ21]

However, satisfying individual fairness constraints alone, may introduce misrepresentation at the group-level

Goal: Output rankings satisfying both individual and group constraints

#### **Model of Fair Ranking**

Ranking [MRS10; Liu09]:

• There are *m* individuals or items and *n* positions

#### **Technical Approach and Challenges**

Existing works [SJ19; SJ18; SKJ21] use the Birkhoff-von-Neumann algorithm [Bru82] to sample rankings from individually-fair distribution such that they satisfy group fairness constraints in aggregate

Idea: If the polytope of group-fair rankings is integral, one can use adaptations of the Birkhoff-von-Neumann algorithm

**Problem:** Group-fair rankings form a non-integral polytope (Section A)

Idea: Consider a family of "coarse rankings." A coarse ranking is the same as a ranking except that it does not order items within blocks

**Fact:** The polytope of coarse rankings is integral [PLN22] and, hence, one can use adaptations of the Birkhoff-von-Neumann algorithm

Algorithm: (1) Sample a group-fair coarse ranking from an individuallyfair distribution and (2) Convert the sampled coarse ranking to a proper ranking (this step loses at most  $(1 - \alpha)$ -fraction of the utility)

#### **Empirical Results on Real-World Data**

**Data:** Occupations data [CK20] which contains top 100 Google image

Placing the *i*-th item at the *j*-th position gives  $\rho_i \cdot v_i$  utility

**Output:** A ranking of *n* items with the highest utility

#### Fair Ranking [YS17; CSV18; SJ18...]:

Protected groups: A Laminar family of sets  $G_1, G_2, \dots, G_n \subseteq \{1, 2, \dots, m\}$ 

Blocks:  $B_1, B_2, ..., B_q \subseteq \{1, 2, ..., n\}$ 

Disjoint subsets of positions (e.g., different pages in web search)

Group fairness constraints: Lower/upper bounds specified by L/URequire at least  $L_{k\ell}$  and at most  $U_{k\ell}$  items from  $G_{\ell}$  in  $B_k$ E.g.,  $L_{k\ell} = U_{k\ell} = |B_k|/2 \implies$  Equal representation constraints

Individual fairness constraints: Lower/upper bounds specified by C/A Ensure item i appears in  $B_k$  with probability at least  $C_{ik}$  and at most  $A_{ik}$ 

**Output:** Ranking maximizing expected utility subject to fairness constraints

## **Existing Algorithms Can Violate Group Fairness**

Frameworks of some recent works can be adapted to incorporate both individual and group fairness constraints [SJ19; SJ18; SKJ21]

They solve a linear program (LP), whose solution is a distribution over rankings that (1) satisfies individual fairness constraints and (2) rankings search results for 96 occupation related queries. The data has crowdsourced gender attributes-which we use as ground truth

**Notion of Fairness:** Equal representation across genders and individuals receive at least a certain exposure determined by their utility

Metrics: (1) Probability of violating equal representation, (2) deviation from the specified individual fairness constraints, and (3) DCG-based utility

Main Observation: Our algorithm outputs rankings which always satisfy the specified fairness constraints; while losing ≤6% utility with respect to baselines



The paper also has empirical results with other datasets

#### **Limitations and Future Work**

We consider the utility of a ranking to be a linear function of the utilities items in the ranking. While this captures many applications [ZYS22a; ZYS22b; PSK21], in some applications, the utilities may be

#### sampled from it satisfy the group fairness constraints in expectation





#### Our algorithm works for Laminar family of groups, but not for an

arbitrary family of protected groups