
Group Fairness Constraints Alone Are Insufficient

A growing number algorithms try to output “fair” rankings by ensuring a 
desired representation of each protected group [PSK21; ZYS22]

While group fairness can mitigate under-representation across groups, 
they may not mitigate (and can even exacerbate) harms at individual level

E.g., specific individuals (whose utilities have high uncertainty) may be 
systematically assigned to poorer positions [Han+17; SKJ21]

Limitations and Future Work

We consider the utility of a ranking to be a linear function of the 
utilities items in the ranking. While this captures many applications 
[ZYS22a; ZYS22b; PSK21], in some applications, the utilities may be 
non-linear [Agr+09; Asa+22; KRT22].

Our algorithm works for Laminar family of groups, but not for an 
arbitrary family of protected groups
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Need of Fairness in Ranking Algorithms

Rankings are ubiquitous on online platforms and quintessential in finding  
relevant information quickly [Liu09; MRS10; ER15; Nob18; BW21]

Without fairness consideration, ranking algorithms output rankings that 
(1) skew representations of social groups–altering perception and 
polarizing opinions [ER15; KMM15] and (2) skew exposure at an individual 
level–leading to denial of economic opportunities to users [Han+17]

Individual Fairness Requires Stochasticity 

Recent work in fair ranking proposes to incorporate fairness, from the 
individuals’ perspective, in rankings [SJ18; BGW18; SKJ21]. At a high level, 
they aim to equalize the exposure of individuals with similar “utilities”

Problem: Since exposure is linked to the position of individuals in the 
ranking, a single deterministic ranking cannot satisfy individual fairness 

Example: For instance, suppose individuals 𝑖1 and 𝑖2 have similar utilities. 
Any deterministic ranking, must place one before the other, thereby 
imparting a systematically higher exposure to the earlier individual.

Idea: Introduce stochasticity in the output rankings [SJ18; BGW18; SKJ21]

However, satisfying individual fairness constraints alone, may introduce 
misrepresentation at the group-level

Goal: Output rankings satisfying both individual and group constraints

Existing Algorithms Can Violate Group Fairness

Frameworks of some recent works can be adapted to incorporate both 
individual and group fairness constraints [SJ19; SJ18; SKJ21]

They solve a linear program (LP), whose solution is a distribution over 
rankings that (1) satisfies individual fairness constraints and (2) rankings 
sampled from it satisfy the group fairness constraints in expectation

Problem: Even though sampled rankings satisfy group fairness constraints 
in aggregate, each output ranking can violate group fairness constraints

Empirical Results on Real-World Data

Data: Occupations data [CK20] which contains top 100 Google image 
search results for 96 occupation related queries. The data has crowd-
sourced gender attributes–which we use as ground truth 

Notion of Fairness: Equal representation across genders and 
individuals receive at least a certain exposure determined by their utility

Metrics: (1) Probability of 
violating equal representation, 
(2) deviation from the specified 
individual fairness constraints, 
and (3) DCG-based utility

Main Observation: Our 
algorithm outputs rankings 
which always satisfy the 
specified fairness constraints; 
while losing ≤6% utility with 
respect to baselines 

The paper also has empirical results with other datasets

Theoretical Guarantees on Sampling Group-Fair 
Rankings from Individually-Fair Distributions

An efficient algorithm that samples rankings from an individually-fair 
distribution while ensuring that every output ranking is group fair

We present tighter bounds on 𝛼 in the paper. 𝛼 approaches 1 as either  
(1) the range of utilities or (2) the range of position-discounts shrinks.

E.g., with DCG position discounts [JK02] and 𝑘 = 1,2,3, 𝛼 is ≥ 0.8, 0.7, 0.6…

Technical Approach and Challenges

Existing works [SJ19; SJ18; SKJ21] use the Birkhoff-von-Neumann 
algorithm [Bru82] to sample rankings from  individually-fair distribution 
such that they satisfy group fairness constraints in aggregate

Idea: If the polytope of group-fair rankings is integral, one can use 
adaptations of the Birkhoff-von-Neumann algorithm

Problem: Group-fair rankings form a non-integral polytope (Section A)

Idea: Consider a family of “coarse rankings.” A coarse ranking is the 
same as a ranking except that it does not order items within blocks

Fact: The polytope of coarse rankings is integral [PLN22] and, hence, 
one can use adaptations of the Birkhoff-von-Neumann algorithm 

Algorithm: (1) Sample a group-fair coarse ranking from an individually-
fair distribution and (2) Convert the sampled coarse ranking to a proper 
ranking (this step loses at most (1 − 𝛼)-fraction of the utility)

Main Result. There is a polynomial time algorithm, that given 𝐿, 𝑈, 𝐴, 𝐶 
specifying fairness constraints, and 𝜌 and 𝑣 specifying utilities, outputs 
a ranking 𝑅 sampled from distribution 𝒟 such that 

1.  𝒟 satisfies (𝐶, 𝐴)-individual-fairness constraints; and 
2.  𝑅 satisfies (𝐿, 𝑈)-group-fairness constraints. 

The expected utility of 𝑅 is at least 𝛼-times the optimal, where, e.g., 
 

Model of Fair Ranking

Ranking [MRS10; Liu09]: 
• There are 𝑚 individuals or items and 𝑛 positions 
• Placing the 𝑖-th item at the 𝑗-th position gives 𝜌𝑖 ⋅ 𝑣𝑗 utility 

Fair Ranking [YS17; CSV18; SJ18…]:

    Protected groups: A Laminar family of sets 𝐺1, 𝐺2, … , 𝐺𝑝 ⊆ 1,2,… ,𝑚
 

    Blocks: 𝐵1, 𝐵2, … , 𝐵𝑞 ⊆ {1, 2,… , 𝑛}

 Disjoint subsets of positions (e.g., different pages in web search)

    Group fairness constraints: Lower/upper bounds specified by 𝐿/𝑈
 Require at least 𝐿𝑘ℓ and at most 𝑈𝑘ℓ items from 𝐺ℓ in 𝐵𝑘
 E.g., 𝐿𝑘ℓ = 𝑈𝑘ℓ = |𝐵𝑘|/2  ⇒  Equal representation constraints

    Individual fairness constraints: Lower/upper bounds specified by 𝐶/𝐴
 Ensure item 𝑖 appears in 𝐵𝑘  with probability at least 𝐶𝑖𝑘 and at most 𝐴𝑖𝑘

Output: A ranking of 𝑛 items with the highest utility

Output: Ranking maximizing expected utility subject to fairness constraints
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